275 research outputs found

    Unsupervised Anomaly-based Malware Detection using Hardware Features

    Get PDF
    Recent works have shown promise in using microarchitectural execution patterns to detect malware programs. These detectors belong to a class of detectors known as signature-based detectors as they catch malware by comparing a program's execution pattern (signature) to execution patterns of known malware programs. In this work, we propose a new class of detectors - anomaly-based hardware malware detectors - that do not require signatures for malware detection, and thus can catch a wider range of malware including potentially novel ones. We use unsupervised machine learning to build profiles of normal program execution based on data from performance counters, and use these profiles to detect significant deviations in program behavior that occur as a result of malware exploitation. We show that real-world exploitation of popular programs such as IE and Adobe PDF Reader on a Windows/x86 platform can be detected with nearly perfect certainty. We also examine the limits and challenges in implementing this approach in face of a sophisticated adversary attempting to evade anomaly-based detection. The proposed detector is complementary to previously proposed signature-based detectors and can be used together to improve security.Comment: 1 page, Latex; added description for feature selection in Section 4, results unchange

    Reflections on the Engineering and Operation of a Large-Scale Embedded Device Vulnerability Scanner

    Get PDF
    We present important lessons learned from the engineering and operation of a large-scale embedded device vulnerability scanner infrastructure. Developed and refined over the period of one year, our vulnerability scanner monitored large portions of the Internet and was able to identify over 1.1 million publicly accessible trivially vulnerable embedded devices. The data collected has helped us move beyond vague, anecdotal suspicions of embedded insecurity towards a realistic quantitative understanding of the current threat. In this paper, we describe our experimental methodology and reflect on key technical, organizational and social challenges encountered during our research. We also discuss several key technical design missteps and operational failures and their solutions
    • …
    corecore